Residue

Consider a function f holomorphic in B(z0,r){z0}. We call residue of f at z0, denoted by Res(f,z0), to the term b1 in the corresponding Laurent series.

Residue Calculation for Poles

Extract b1 from the Laurent series near a pole of order m at z0.
For a pole of order m:

f(z)=bm(zz0)m++b2(zz0)2+b1zz0+b0+

Multiply to cancel the singularity:

(zz0)mf(z)=bm+bm+1(zz0)++b1(zz0)m1+b0(zz0)m+

Differentiate (m1) times:

dm1dzm1[(zz0)mf(z)]=(m1)!b1+terms with (zz0)

Evaluate at z=z0:

b1=1(m1)!limzz0dm1dzm1[(zz0)mf(z)]

Special Cases

Simple Pole (m=1)

Res(f,z0)=limzz0(zz0)f(z)

Double Pole (m=2)

Res(f,z0)=limzz0ddz[(zz0)2f(z)]