Numerical series
Definition
We call a numerical series and represent it with the symbol
the pair of sequences
is a sequence of complex numbers, whose terms are called the terms of the series. is the sequence called the sequence of partial sums of the series such that, for each :
Definition
We say that the series
is convergent if the sequence of partial sums
Definition
We say that the series
converges absolutely if the series of the moduli
converges.
Perfect — here’s the next section written in Obsidian note style, continuing from the previous ones:
Proposition. Convergence Criteria
The following criteria for the convergence of series of complex numbers hold:
- Cauchy Criterion. The series
is convergent if and only if for every
- Comparison Criterion. Let
be two series of complex numbers. Suppose that
Then if
3. Root Test. Let
exists. Then, if
- Ratio Test. Let
be a series and suppose the limit
exists. Then, if