Cauchy--Riemann equations

Given a holomorphic function f:ΩC with f(z)=(u(z),v(z)) the following relations hold:

ux(x0,y0)=vy(x0,y0),uy(x0,y0)=vx(x0,y0).

Interpretation: as a function of two variables f:R2R2 we have the linear map df(x0,y0):R2R2 given by the Jacobian matrix:

Jf(x0,y0)=(ux(x0,y0)uy(x0,y0)vx(x0,y0)vy(x0,y0))$$ApplyingtheCauchyRiemannequations,wecanrewritethismatrixas:

J_f(x_0, y_0) = \begin{pmatrix}
u_x(x_0, y_0) & -v_x(x_0, y_0) \
v_x(x_0, y_0) & u_x(x_0, y_0)
\end

Thisformispreciselythematrixrepresentationofmultiplicationbyacomplexnumber.Ifweconsideracomplexnumber$a+bi$,itsactiononanothercomplexnumber$x+yi$(representedasavector$(x,y)$)canbewrittenas:

(a+bi)(x+yi) = (ax-by) + (ay+bx)i

Inmatrixform,thiscorrespondsto:

\begin{pmatrix}
a & -b \
b & a
\end{pmatrix}
\begin{pmatrix}
x \
y
\end{pmatrix} = \begin{pmatrix}
ax-by \
bx+ay
\end

ComparingthiswiththeJacobianmatrix,weseethat$ux(x0,y0)$playstheroleof$a$and$vx(x0,y0)$playstheroleof$b$.Therefore,thedifferential$df(x0,y0)$atapoint$(x0,y0)$actsasmultiplicationbythecomplexnumber$ux(x0,y0)+ivx(x0,y0)$.Thiscomplexnumberisprecisely$f(z0)$where$z0=x0+iy0$.Inessence,theholomorphicityconditionensuresthatthelocallinearapproximationofthefunction(itsdifferential)behavesexactlylikemultiplicationbyasinglecomplexnumber,ratherthanamoregenerallineartransformationin$R2$:if$f(z0)0$,thelocallinearapproximationisadilationfollowedbyarotation(amplitwist,accordingto[[Bibliography/@Needham1997Visual@Needham1997Visual]]).