Cauchy--Riemann equations
Given a holomorphic function with the following relations hold:
Interpretation: as a function of two variables we have the linear map given by the Jacobian matrix:
J_f(x_0, y_0) = \begin{pmatrix}
u_x(x_0, y_0) & -v_x(x_0, y_0) \
v_x(x_0, y_0) & u_x(x_0, y_0)
\end
(a+bi)(x+yi) = (ax-by) + (ay+bx)i
\begin{pmatrix}
a & -b \
b & a
\end{pmatrix}
\begin{pmatrix}
x \
y
\end{pmatrix} = \begin{pmatrix}
ax-by \
bx+ay
\end