Ito's Lemma

Let’s consider a function of Brownian motion (which is a particular case of stochastic process), as for instance:

f(t,W(t))=exp((μσ22)t+σW(t)).

Using Ito's Lemma for a function f(t,W(t)), we have:

df=(ft+122fW2)dt+fWdW.

Then, for the given example,

f(t,W(t))=exp(At+σW(t)),where A=μσ22,

we have

Now plug into Ito’s formula:

dS=(Af+12σ2f)dt+σfdW=f((A+12σ2)dt+σdW)

Recall A=μσ22, so:

A+12σ2=μ

Therefore:

dS=f(μdt+σdW)=S(t)(μdt+σdW)