Uncertainty principle

For an algebraic justification, see Why did physics go quantum.
It is something general for any signal. It has to do with Fourier transform and short-time Fourier transform.

Discrete case

The setup

Consider the “toy” world introduced in translation and momentum operators: five discrete “positions” x=1,2,3,4,5 and the cyclic translation operator T. Recall that we have:

  1. Position operator
X^=diag(1,2,3,4,5),

so that a position eigenstate |xj has X^|xj=j|xj.

  1. Translation operator
T|xj=|xj+1(mod5),

cyclically shifting the components (a,b,c,d,e)(e,a,b,c,d).

  1. Momentum “generator”
    We define
eP=TP=logT.

Since T is unitary with eigenvalues e2πik/5 (k=0,1,2,3,4), its logarithm P has eigenvalues $$
p_k ;=;\tfrac{2\pi k}{5},,
\qquad
P,\lvert p_k\rangle = p_k,\lvert p_k\rangle,.

These $\lvert p_k\rangle$ form the “momentum basis,” related to the position basis by the discrete Fourier transform. ##### The non-commutation In infinite dimensions one has $[\hat X,\hat P] = i\hbar$. Here, in our 5-dimensional toy model, one can check directly that

[\hat X,,T] ;=;\hat X,T ;-;T,\hat X
;=;
\begin{pmatrix}
-4 & 0 & 0 & 0 & 0\
0 & 1 & 0 & 0 & 0\
0 & 0 & 1 & 0 & 0\
0 & 0 & 0 & 1 & 0\
0 & 0 & 0 & 0 & 1
\end{pmatrix},,

andsince$P=logT$onecanshow(viaapowerseriesexpansion)that

[\hat X,,P]
;=;
[\hat X,,\log T]
;=;
\text{(a nonzero constant matrix)}.

The upshot is: **$\hat X$ and $\hat P$ do *not* commute.** And then we have: ##### Robertson’s Uncertainty Relation For any state $\lvert\psi\rangle$, define the variances

(\Delta X)^2 = \langle\psi|\hat X^2|\psi\rangle
- \langle\psi|\hat X|\psi\rangle^2,
\quad
(\Delta P)^2 = \langle\psi|\hat P^2|\psi\rangle
- \langle\psi|\hat P|\psi\rangle^2.

Robertsonstheoremthengives

\Delta X,\Delta P
;\ge;
\tfrac12,\bigl|\langle[\hat X,\hat P]\rangle_\psi\bigr|.

IninfinitedimensionalQMthe[[01CONCEPTS/canonicalcommutationrelationscanonicalcommutationrelations]]makestherighthandsidetobeequalto$2$,butinthiscasetherighthandsidecanvanishforsomestates.