Uncertainty principle
For an algebraic justification, see Why did physics go quantum .
It is something general for any signal. It has to do with Fourier transform and short-time Fourier transform .
Discrete case
The setup
Consider the “toy” world introduced in translation and momentum operators : five discrete “positions” x = 1 , 2 , 3 , 4 , 5 and the cyclic translation operator T . Recall that we have:
Position operator
X ^ = diag ( 1 , 2 , 3 , 4 , 5 ) , so that a position eigenstate | x j ⟩ has X ^ | x j ⟩ = j | x j ⟩ .
Translation operator
T | x j ⟩ = | x j + 1 ( mod 5 ) ⟩ , cyclically shifting the components ( a , b , c , d , e ) ↦ ( e , a , b , c , d ) .
Momentum “generator”
We define
e P = T ⟹ P = log T . Since T is unitary with eigenvalues e 2 π i k / 5 (k = 0 , 1 , 2 , 3 , 4 ), its logarithm P has eigenvalues $$
p_k ;=;\tfrac{2\pi k}{5},,
\qquad
P,\lvert p_k\rangle = p_k,\lvert p_k\rangle,.
You can't use 'macro parameter character #' in math mode These $\lvert p_k\rangle$ form the “momentum basis,” related to the position basis by the discrete Fourier transform . ##### The non-commutation In infinite dimensions one has $[\hat X,\hat P] = i\hbar$. Here, in our 5-dimensional toy model, one can check directly that These $\lvert p_k\rangle$ form the “momentum basis,” related to the position basis by the discrete Fourier transform . ##### The non-commutation In infinite dimensions one has $[\hat X,\hat P] = i\hbar$. Here, in our 5-dimensional toy model, one can check directly that [\hat X,,T] ;=;\hat X,T ;-;T,\hat X
;=;
\begin{pmatrix}
-4 & 0 & 0 & 0 & 0\
0 & 1 & 0 & 0 & 0\
0 & 0 & 1 & 0 & 0\
0 & 0 & 0 & 1 & 0\
0 & 0 & 0 & 0 & 1
\end{pmatrix},,
a n d s i n c e $ P = log T $ o n e c a n s h o w ( v i a a p o w e r s e r i e s e x p a n s i o n ) t h a t [\hat X,,P]
;=;
[\hat X,,\log T]
;=;
\text{(a nonzero constant matrix)}.
You can't use 'macro parameter character #' in math mode The upshot is: **$\hat X$ and $\hat P$ do *not* commute.** And then we have: ##### Robertson’s Uncertainty Relation For any state $\lvert\psi\rangle$, define the variances The upshot is: **$\hat X$ and $\hat P$ do *not* commute.** And then we have: ##### Robertson’s Uncertainty Relation For any state $\lvert\psi\rangle$, define the variances (\Delta X)^2 = \langle\psi|\hat X^2|\psi\rangle
- \langle\psi|\hat X|\psi\rangle^2,
\quad
(\Delta P)^2 = \langle\psi|\hat P^2|\psi\rangle
- \langle\psi|\hat P|\psi\rangle^2.
R o b e r t s o n ′ s t h e o r e m t h e n g i v e s \Delta X,\Delta P
;\ge;
\tfrac12,\bigl|\langle[\hat X,\hat P]\rangle_\psi\bigr|.
I n i n f i n i t e − d i m e n s i o n a l Q M t h e [ [ 01 C O N C E P T S / c a n o n i c a l c o m m u t a t i o n r e l a t i o n s ∥ c a n o n i c a l c o m m u t a t i o n r e l a t i o n s ] ] m a k e s t h e r i g h t h a n d s i d e t o b e e q u a l t o $ ℏ 2 $ , b u t i n t h i s c a s e t h e r i g h t h a n d s i d e c a n v a n i s h f o r s o m e s t a t e s .