cinf-structure-based method

Distributions version

This is in this paper.
Just like a solvable structure, a cinf-structure X1,,Xnr of an involutive distribution Z={Z1,,Zr} can be used to find their integral manifolds by following a procedure which is similar to the case of solvable structures. This algorithm is as follows:

Thusweobtainasequenceof[[01CONCEPTS/GEOMETRY/PfaffiansystemPfaffiansystem]]s

\begin{array}{l}
\mathcal{P}0=\mathcal{Z}^{\circ}=\mathcal{S}({\omega_1,\ldots,\omega}),\
\mathcal{P}1=\left(\mathcal{Z}\oplus \mathcal{S}({X_1})\right)^{\circ}=\mathcal{S}({\omega_2,\ldots,\omega}), \
\cdots\
\mathcal{P}{i}=\left(\mathcal{Z}\oplus \mathcal{S}({X_1,\ldots,X_i})\right)^{\circ}=\mathcal{S}({\omega,\ldots,\omega_{n-r}}), \
\cdots \
\mathcal{P}{n-r-1}=\left(\mathcal{Z}\oplus \mathcal{S}({X_1,\ldots,X})\right)^{\circ}=\mathcal{S}({\omega_{n-r}} ),\
\end

associatedtothesequenceofdistributions$ZS({X1,,Xi})$,$i=1,,nr1$.ThesePfaffiansystemsarecompletelyintegrable,sincethecorrespondingdistributionsareinvolutive.Thenwelookforasolution$Inr$ofthecompletelyintegrablePfaffianequation$Pnr1$,thatis$ωnr0$,bysolvingthesystemofhomogeneouslinearfirstorderPDEsgivenby

dI_{n-r}\wedge \omega_{n-r}=0.

Wefixanarbitraryconstant$CnrR$andconsidertheintegralmanifoldof$Pnr1$givenbythelevelset$Inr=Cnr$,whichwillbedenotedby$Σ(Cnr)$.ThenweobtaintherestrictionofthePfaffiansystems$Pnr2$to$Σ(Cnr)$,

\mathcal{P}{n-r-2}|{\Sigma_{(C_{n-r})}}=\mathcal{S}({\omega_{n-r-1}|{\Sigma)}},\omega_{n-r}|{\Sigma)}}}),

bypullingbackwithasuitableembedding$ιnr:Vn1Σ(Cnr)$,withdomainanopensubset$Vn1$of$Rn1$.Observethanboth$ιnr$and$Vn1$dependontheconstant$Cnr$.TheintegralmanifoldsoftherestrictedPfaffiansystemgiverisetointegralmanifoldsoftheoriginal$Pnr2$aftercompositionwiththeembedding$ιnr$.Butnowobservethat$Pnr2|Σ(Cnr)$isanewPfaffianequation(since$ωnr|Σ(Cnr)=0$)definedonaspaceofonelessvariable.Soweproceedasinstep2bysolving$ωnr1|Σ(Cnr)0$,andusingasolutiontodefinethelevelsets$Σ(Cnr1,Cnr)$with$Cnr1R$.IneveryiterationwesolvethePfaffianequation

\omega_{i}|{\Sigma,\ldots,C_{n-r})}}\equiv 0.

Asolution$Ii$givesrisetolevelsets

\Sigma_{(C_{i},C_{i+1},\ldots,C_{n-r})}={p\in \Sigma_{(C_{i+1},\ldots,C_{n-r})}:I_{i}(p)=C_{i}}, \text{ with } C_i\in \mathbb R,

which are integral manifolds of the restriction of the Pfaffian system $\mathcal{P}_{i-1}$ to $\Sigma_{(C_{i+1},\ldots,C_{n-r})}$. The embedding of $\Sigma_{(C_{i},C_{i+2},\ldots,C_{n-r})}$ into $U$ are integral manifolds of $\mathcal{P}_{i-1}$. Eventually, after $n-r$ iterations we arrive to integral manifolds of $\mathcal{P}_0=\mathcal{Z}^{\circ}$, which are the integral manifolds of $\mathcal{Z}$. ## ODEs version Consider an $m$th-order ODE

u_m=\phi(x,u,u_1,\ldots,u_{m-1}),

where$ϕ$isasmoothfunctiondefinedonanopensubset$U$ofthejetspace$Jm1(R,R)$,withcoordinates$(x,u,u1,,um1)$.Wecanassociatetothisequationthe(trivially)involutivedistribution$S({Z})$,generatedbythevectorfield

Z=\partial_x+u_1\partial_u+\cdots+\phi \partial_{u_{m-1}}.

TheintegralmanifoldsofthisdistributioncorrespondtotheprolongationofsolutionsoftheODE.The$C$structurebasedmethodofintegrationallowsustofindtheseintegralmanifoldsbylookingfora$C$structurefortheequation.Themainresultconcerning$C$structuresisthattheycanbeusedtointegratetheODEbymeansoftheresolutionof$m$Pfaffianequationswhicharecompletelyintegrable(see\cite[Theorem4.1]pancinfsym).Thisintegrationcanbeperformedasfollows:Thisintegrationcanbeperformedasfollows:1.ConsiderthestandardvolumeformΩon$U$:

\boldsymbol{\Omega} = dx \wedge du \wedge du_1 \wedge \cdots \wedge du_{m-1}.

Weintroducethe1forms:

\omega_i = {X_{m},\lrcorner,\ldots,\lrcorner,\widehat{X_i},\lrcorner,\ldots,\lrcorner,X_{1},\lrcorner,A,\lrcorner,\boldsymbol{\Omega}}, \quad 1\leq i\leq m,

where$Xi^$indicatesomissionof$Xi$and$$denotestheinteriorproduct.2.ThePfaffianequation$ωm0$iscompletelyintegrable[1,2,3].Afirstintegral$Im=Im(x,u,u1,,um1)$canbefoundbysolvingthesystemoflinearhomogeneousfirstorderPDEsarisingfromthecondition$dImωm=0$.Thelevelsets$Σ(Cm)$,implicitlydefinedby$Im(x,u,u1,,um1)=Cm$,where$CmR$,arethesolutionsto$ωm0$.3.Givenalocalparametrization$ιm$of$Σ(Cm)$,definedonanopensubset$VmRm$,wecalculate:

\omega_i|{\Sigma{(C_m)}} := \iota_m^*(\omega_i), \quad 1\leq i\leq m.

WerepeattheprocessforthePfaffianequation$ωm1|Σ(Cm)0$,whichiscompletelyintegrable.Similarly,wedenote:

\omega_{i}|{\Sigma,C_m)}} := \iota_{m-1}^*(\omega_{i}|{\Sigma{(C_m)}}), \quad 1\leq i\leq m,

andweproceedwith$ωm2|Σ(Cm1,Cm)0$,andsoon.4.Ateachstep,wesolvethecompletelyintegrablePfaffianequation$ωk|Σ(Ck+1,,Cm)0$,obtainingafirstintegral:

I_k = I_k(x,u,u_1,\ldots,u_{k-1};C_{k+1},\ldots,C_{m}).

Then,alocalparametrization$ιk$,definedonanopensubset$UkRk$,ofthelevelset$Σ(Ck,,Cm)$isfound.Theprocessfinalizeswhen:

I_1 = I_1(x,u;C_{2},\ldots,C_{m})

is obtained. The solutions are implicitly defined by the level sets $\Sigma_{(C_1,\ldots,C_m)}$. ### References 1. Pancinf-Sym 2. Pancinf-Struct 3. Pan23Integration