cinf-structure-based method
Distributions version
This is in this paper .
Just like a solvable structure, a cinf-structure ⟨ X 1 , … , X n − r ⟩ of an involutive distribution Z = { Z 1 , … , Z r } can be used to find their integral manifolds by following a procedure which is similar to the case of solvable structures. This algorithm is as follows:
First, observe that the set { Z 1 , … , Z r , X 1 , … , X n − r } constitute a frame on U , so we can consider the 1-forms $$\omega_i = X_{n-r} \lrcorner \ldots \lrcorner \hat{X}_i \lrcorner\ldots X_1\lrcorner Z_r\lrcorner \ldots \lrcorner Z_1 \lrcorner \Omega, \quad 1 \leq i \leq n-r,
− T h u s w e o b t a i n a s e q u e n c e o f [ [ 01 C O N C E P T S / G E O M E T R Y / P f a f f i a n s y s t e m ∥ P f a f f i a n s y s t e m ] ] s \begin{array}{l}
\mathcal{P}0=\mathcal{Z}^{\circ}=\mathcal{S}({\omega_1,\ldots,\omega }),\
\mathcal{P}1=\left(\mathcal{Z}\oplus \mathcal{S}({X_1})\right)^{\circ}=\mathcal{S}({\omega_2,\ldots,\omega }), \
\cdots\
\mathcal{P}{i}=\left(\mathcal{Z}\oplus \mathcal{S}({X_1,\ldots,X_i})\right)^{\circ}=\mathcal{S}({\omega ,\ldots,\omega_{n-r}}), \
\cdots \
\mathcal{P}{n-r-1}=\left(\mathcal{Z}\oplus \mathcal{S}({X_1,\ldots,X })\right)^{\circ}=\mathcal{S}({\omega_{n-r}} ),\
\end
a s s o c i a t e d t o t h e s e q u e n c e o f d i s t r i b u t i o n s $ Z ⊕ S ( { X 1 , … , X i } ) $ , $ i = 1 , … , n − r − 1 $ . T h e s e P f a f f i a n s y s t e m s a r e c o m p l e t e l y i n t e g r a b l e , s i n c e t h e c o r r e s p o n d i n g d i s t r i b u t i o n s a r e i n v o l u t i v e . − T h e n w e l o o k f o r a s o l u t i o n $ I n − r $ o f t h e c o m p l e t e l y i n t e g r a b l e P f a f f i a n e q u a t i o n $ P n − r − 1 $ , t h a t i s $ ω n − r ≡ 0 $ , b y s o l v i n g t h e s y s t e m o f h o m o g e n e o u s l i n e a r f i r s t o r d e r P D E s g i v e n b y dI_{n-r}\wedge \omega_{n-r}=0.
− W e f i x a n a r b i t r a r y c o n s t a n t $ C n − r ∈ R $ a n d c o n s i d e r t h e i n t e g r a l m a n i f o l d o f $ P n − r − 1 $ g i v e n b y t h e l e v e l s e t $ I n − r = C n − r $ , w h i c h w i l l b e d e n o t e d b y $ Σ ( C n − r ) $ . T h e n w e o b t a i n t h e r e s t r i c t i o n o f t h e P f a f f i a n s y s t e m s $ P n − r − 2 $ t o $ Σ ( C n − r ) $ , \mathcal{P}{n-r-2}| {\Sigma_{(C_{n-r})}}=\mathcal{S}({\omega_{n-r-1}|{\Sigma )}},\omega_{n-r}|{\Sigma )}}}),
b y p u l l i n g b a c k w i t h a s u i t a b l e e m b e d d i n g $ ι n − r : V n − 1 → Σ ( C n − r ) $ , w i t h d o m a i n a n o p e n s u b s e t $ V n − 1 $ o f $ R n − 1 $ . O b s e r v e t h a n b o t h $ ι n − r $ a n d $ V n − 1 $ d e p e n d o n t h e c o n s t a n t $ C n − r $ . − T h e i n t e g r a l m a n i f o l d s o f t h e r e s t r i c t e d P f a f f i a n s y s t e m g i v e r i s e t o i n t e g r a l m a n i f o l d s o f t h e o r i g i n a l $ P n − r − 2 $ a f t e r c o m p o s i t i o n w i t h t h e e m b e d d i n g $ ι n − r $ . B u t n o w o b s e r v e t h a t $ P n − r − 2 | Σ ( C n − r ) $ i s a n e w P f a f f i a n e q u a t i o n ( s i n c e $ ω n − r | Σ ( C n − r ) = 0 $ ) d e f i n e d o n a s p a c e o f o n e l e s s v a r i a b l e . S o w e p r o c e e d a s i n s t e p 2 b y s o l v i n g $ ω n − r − 1 | Σ ( C n − r ) ≡ 0 $ , a n d u s i n g a s o l u t i o n t o d e f i n e t h e l e v e l s e t s $ Σ ( C n − r − 1 , C n − r ) $ w i t h $ C n − r − 1 ∈ R $ . − I n e v e r y i t e r a t i o n w e s o l v e t h e P f a f f i a n e q u a t i o n \omega_{i}|{\Sigma ,\ldots,C_{n-r})}}\equiv 0.
A s o l u t i o n $ I i $ g i v e s r i s e t o l e v e l s e t s \Sigma_{(C_{i},C_{i+1},\ldots,C_{n-r})}={p\in \Sigma_{(C_{i+1},\ldots,C_{n-r})}:I_{i}(p)=C_{i}}, \text{ with } C_i\in \mathbb R,
You can't use 'macro parameter character #' in math mode which are integral manifolds of the restriction of the Pfaffian system $\mathcal{P}_{i-1}$ to $\Sigma_{(C_{i+1},\ldots,C_{n-r})}$. The embedding of $\Sigma_{(C_{i},C_{i+2},\ldots,C_{n-r})}$ into $U$ are integral manifolds of $\mathcal{P}_{i-1}$. Eventually, after $n-r$ iterations we arrive to integral manifolds of $\mathcal{P}_0=\mathcal{Z}^{\circ}$, which are the integral manifolds of $\mathcal{Z}$. ## ODEs version Consider an $m$th-order ODE which are integral manifolds of the restriction of the Pfaffian system $\mathcal{P}_{i-1}$ to $\Sigma_{(C_{i+1},\ldots,C_{n-r})}$. The embedding of $\Sigma_{(C_{i},C_{i+2},\ldots,C_{n-r})}$ into $U$ are integral manifolds of $\mathcal{P}_{i-1}$. Eventually, after $n-r$ iterations we arrive to integral manifolds of $\mathcal{P}_0=\mathcal{Z}^{\circ}$, which are the integral manifolds of $\mathcal{Z}$. ## ODEs version Consider an $m$th-order ODE u_m=\phi(x,u,u_1,\ldots,u_{m-1}),
w h e r e $ ϕ $ i s a s m o o t h f u n c t i o n d e f i n e d o n a n o p e n s u b s e t $ U $ o f t h e j e t s p a c e $ J m − 1 ( R , R ) $ , w i t h c o o r d i n a t e s $ ( x , u , u 1 , … , u m − 1 ) $ . W e c a n a s s o c i a t e t o t h i s e q u a t i o n t h e ( t r i v i a l l y ) i n v o l u t i v e d i s t r i b u t i o n $ S ( { Z } ) $ , g e n e r a t e d b y t h e v e c t o r f i e l d Z=\partial_x+u_1\partial_u+\cdots+\phi \partial_{u_{m-1}}.
T h e i n t e g r a l m a n i f o l d s o f t h i s d i s t r i b u t i o n c o r r e s p o n d t o t h e p r o l o n g a t i o n o f s o l u t i o n s o f t h e O D E . T h e $ C ∞ $ − s t r u c t u r e − b a s e d m e t h o d o f i n t e g r a t i o n a l l o w s u s t o f i n d t h e s e i n t e g r a l m a n i f o l d s b y l o o k i n g f o r a $ C ∞ $ − s t r u c t u r e f o r t h e e q u a t i o n . T h e m a i n r e s u l t c o n c e r n i n g $ C ∞ $ − s t r u c t u r e s i s t h a t t h e y c a n b e u s e d t o i n t e g r a t e t h e O D E b y m e a n s o f t h e r e s o l u t i o n o f $ m $ P f a f f i a n e q u a t i o n s w h i c h a r e c o m p l e t e l y i n t e g r a b l e ( s e e \cite [ T h e o r e m 4.1 ] p a n c i n f − s y m ) . T h i s i n t e g r a t i o n c a n b e p e r f o r m e d a s f o l l o w s : T h i s i n t e g r a t i o n c a n b e p e r f o r m e d a s f o l l o w s : 1. C o n s i d e r t h e s t a n d a r d v o l u m e f o r m ∗ ∗ Ω ∗ ∗ o n $ U $ : \boldsymbol{\Omega} = dx \wedge du \wedge du_1 \wedge \cdots \wedge du_{m-1}.
W e i n t r o d u c e t h e 1 − f o r m s : \omega_i = {X_{m},\lrcorner,\ldots,\lrcorner,\widehat{X_i},\lrcorner,\ldots,\lrcorner,X_{1},\lrcorner,A,\lrcorner,\boldsymbol{\Omega}}, \quad 1\leq i\leq m,
w h e r e $ X i ^ $ i n d i c a t e s o m i s s i o n o f $ X i $ a n d $ ⌟ $ d e n o t e s t h e i n t e r i o r p r o d u c t . 2. T h e P f a f f i a n e q u a t i o n $ ω m ≡ 0 $ i s c o m p l e t e l y i n t e g r a b l e [ 1 , 2 , 3 ] . A f i r s t i n t e g r a l $ I m = I m ( x , u , u 1 , … , u m − 1 ) $ c a n b e f o u n d b y s o l v i n g t h e s y s t e m o f l i n e a r h o m o g e n e o u s f i r s t − o r d e r P D E s a r i s i n g f r o m t h e c o n d i t i o n $ d I m ∧ ω m = 0 $ . T h e l e v e l s e t s $ Σ ( C m ) $ , i m p l i c i t l y d e f i n e d b y $ I m ( x , u , u 1 , … , u m − 1 ) = C m $ , w h e r e $ C m ∈ R $ , a r e t h e s o l u t i o n s t o $ ω m ≡ 0 $ . 3. G i v e n a l o c a l p a r a m e t r i z a t i o n $ ι m $ o f $ Σ ( C m ) $ , d e f i n e d o n a n o p e n s u b s e t $ V m ⊆ R m $ , w e c a l c u l a t e : \omega_i|{\Sigma {(C_m)}} := \iota_m^*(\omega_i), \quad 1\leq i\leq m.
W e r e p e a t t h e p r o c e s s f o r t h e P f a f f i a n e q u a t i o n $ ω m − 1 | Σ ( C m ) ≡ 0 $ , w h i c h i s c o m p l e t e l y i n t e g r a b l e . S i m i l a r l y , w e d e n o t e : \omega_{i}|{\Sigma ,C_m)}} := \iota_{m-1}^*(\omega_{i}|{\Sigma {(C_m)}}), \quad 1\leq i\leq m,
a n d w e p r o c e e d w i t h $ ω m − 2 | Σ ( C m − 1 , C m ) ≡ 0 $ , a n d s o o n . 4. A t e a c h s t e p , w e s o l v e t h e c o m p l e t e l y i n t e g r a b l e P f a f f i a n e q u a t i o n $ ω k | Σ ( C k + 1 , … , C m ) ≡ 0 $ , o b t a i n i n g a f i r s t i n t e g r a l : I_k = I_k(x,u,u_1,\ldots,u_{k-1};C_{k+1},\ldots,C_{m}).
T h e n , a l o c a l p a r a m e t r i z a t i o n $ ι k $ , d e f i n e d o n a n o p e n s u b s e t $ U k ⊆ R k $ , o f t h e l e v e l s e t $ Σ ( C k , … , C m ) $ i s f o u n d . T h e p r o c e s s f i n a l i z e s w h e n : I_1 = I_1(x,u;C_{2},\ldots,C_{m})
You can't use 'macro parameter character #' in math mode is obtained. The solutions are implicitly defined by the level sets $\Sigma_{(C_1,\ldots,C_m)}$. ### References 1. Pancinf-Sym 2. Pancinf-Struct 3. Pan23Integration is obtained. The solutions are implicitly defined by the level sets $\Sigma_{(C_1,\ldots,C_m)}$. ### References 1. Pancinf-Sym 2. Pancinf-Struct 3. Pan23Integration