Interior product or contraction
The interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product .
It is usually denoted by
It is an antiderivation of degree -1 so
where
Other expressions:
. - Cartan formula
, by Cartan formula.
See also formulas for Lie derivative, exterior derivatives, bracket, interior product.