Solvable structure

Let Z=S(Z1,,Zr) be an involutive distribution on a n-dimensional smooth manifold M. Let X1,,Xnr be an ordered collection of independent vector fields and define

Xk={Z1,,Zr,X1,,Xk}

for k=1,,nr; and X0={Z1,,Zr}. We say that X1,,Xnr is a solvable structure for Z if:

  1. Xk is a set of independent vectors for any pM and for every k=1,,nr.
  2. The vector field Xk is a symmetry of the rank k+r distribution S(Xk), for every k=1,,nr.

Si en vez de tomar symmetry of a distribution hubiésemos pedido que fuesen cinf-symmetry of distribution habríamos obtenido una cinf-structure.

Su existencia permite obtener las inetral submanifolds de Z mediante n cuadraturas.

Se puede debilitar la definición a una partial solvable structure