Lie series

It is a generalization of Taylor series. See @olver86 page 30.
In the context of the note exponential map#Motivation, we have that a vector field X on a manifold M gives rise to a flow in the sense that for a point pM and a fixed "time" t we obtain a point q given by

q=petX=plimn(Id+tX/n)n.

The velocities of this curves are precisely X.
Now, given a smooth function F defined on M, we observe that if X=ξixi

ddtF(petX)=i=1nxiF(petX)ξi(petX)

and for t=0

ddt|t=0F(petX)=i=1nxiF(p)ξi(p)=X(F)(p).

This can be written in another way, according to Taylor

F(petX)F(p)+tX(F)(p)$$and,moreover,

F(pe^{tX})\approx F(p)+tX(F)(p)+\frac{t^2}{2}X^2(F)(p)+\frac{t^3}{3!}X^3(F)(p)+\cdots

where$Xk(F)=X(X((F)))$.ThisexpressioniscalledLieseries.Ifwetake$F=(x1,,xn)$thecoordinatefunctions,then

pe^{tX}=p+t\xi(p)+\frac{t^2}{2}X(\xi)(p)+\frac{t^3}{3!}X(X(\xi))(p)+\cdots \tag

where$ξ=(ξ1,,ξn)$arethecomponentsof$X$,and$X(ξ)=(X(ξ1),,X(ξn))$andsoon.Inthissense,expression$()$isa"formal"powerseriessolutiontothe[[CONCEPTS/DEs/systemoffirstorderODEssystemoffirstorderODEs]]

\dot{x}=X(x).