Manifold with boundary
See @baez1994gauge page 115.
We define a n -dimensional manifold with boundary to be a topological space M equipped with charts (in the sense of a topological manifold ) of the form
φ α : U α → R n or
φ α : U α → H n , where$$
H^n = {(x^1, ..., x^n): x^n \ge 0}.
♾ ️ a n d w h e r e $ U α $ a r e o p e n s e t s c o v e r i n g $ M $ , s u c h t h a t t h e t r a n s i t i o n f u n c t i o n $ φ α ∘ φ β − 1 $ i s s m o o t h w h e r e i t i s d e f i n e d . ( W e a l s o a s s u m e s o m e t e c h n i c a l c o n d i t i o n s , n a m e l y t h a t $ M $ i s H a u s d o r f f a n d p a r a c o m p a c t . ) N o t e t h a t a p l a i n o l d [ [ ♾ ️ C O N C E P T S / m a n i f o l d ∥ m a n i f o l d ] ] i s a u t o m a t i c a l l y a m a n i f o l d w i t h b o u n d a r y . W e h a v e t o w o r r y a b i t a b o u t t h e f a c t t h a t w e h a v e n o t y e t d e f i n e d w h a t i t m e a n s f o r a f u n c t i o n o n $ H n $ t o b e s m o o t h ! W e w a n t s u c h f u n c t i o n s t o b e s m o o t h ′ u p t o a n d i n c l u d i n g t h e b o u n d a r y ′ . P e r h a p s t h e s i m p l e s t w a y t o s a y t h i s i s t h a t a f u n c t i o n o n $ H n $ i s s m o o t h i f i t e x t e n d s t o a s m o o t h f u n c t i o n o n t h e m a n i f o l d {(x^1, ..., x^n): x^n > -\epsilon}
f o r s o m e $ ϵ > 0 $ . H e r e ′ s a c o r r e c t e d a n d m o r e p o l i s h e d v e r s i o n o f y o u r t e x t : I f $ M $ i s a m a n i f o l d w i t h b o u n d a r y , w e d e f i n e t h e b o u n d a r y o f $ M $ t o b e t h e s e t o f p o i n t s $ p ∈ M $ s u c h t h a t t h e r e e x i s t s a c h a r t $ φ : U a → H n $ m a p p i n g $ p $ t o a p o i n t i n t h e b o u n d a r y o f $ H n $ : \begin{align*}
\partial H^n &= {(x^1, \dots, x^n) \in \mathbb{R}^n \mid x^n = 0}.
\end
W e w r i t e $ ∂ M $ f o r t h e b o u n d a r y o f $ M $ .