Cartan formula

Do not confuse with Cartan lemma.

Also called Cartan identity, Cartan homotopy formula or Cartan magic formula

LX=iXd+diX

where for a p-form ω is the p1-form$$
i_X(\omega)(Y_1,Y_2, \ldots)=\omega(X,Y_1,Y_2, \ldots)

Ifwetakeasadefinition

i_X(f)=0

forafunction$f$thenwehavetheknowfact:

\mathcal{L}{\mathbf{X}}(f)=i{\mathbf{X}}(df)

Symbolicallyitcanbedenoted

\left{d, \iota_{X}\right} \omega:=\mathcal{L}{X} \omega=d\left(\iota \omega\right)+\iota_{X} d \omega.

# Other useful formulas See formulas for Lie derivative, exterior derivatives, bracket, interior product