Personal notes on maths and physics
Search
CTRL + K
Sum to product
sin
α
+
sin
β
=
2
sin
(
α
+
β
2
)
cos
(
α
−
β
2
)
sin
α
−
sin
β
=
2
sin
(
α
−
β
2
)
cos
(
α
+
β
2
)
cos
α
−
cos
β
=
−
2
sin
(
α
+
β
2
)
sin
(
α
−
β
2
)
cos
α
+
cos
β
=
2
cos
(
α
+
β
2
)
cos
(
α
−
β
2
)
Hyperbolic and usual trigonometric functions
tanh
(
x
)
=
−
i
tan
(
i
x
)
arctan
(
x
)
=
1
i
arctanh
(
i
x
)
arctan
(
i
x
)
=
i
arctanh
(
x
)
i
arccot
(
−
i
x
)
=
−
arctanh
(
1
x
)
i
arccoth
(
i
x
)
=
arctan
(
1
x
)
arctan
(
z
)
=
i
2
ln
(
1
−
i
z
1
+
i
z
)
sinh
(
i
z
)
=
i
sin
(
z
)
arcsin
(
x
)
=
−
i
arsinh
(
i
x
)
For the addition of arctangents:
arctan
(
a
)
+
arctan
(
b
)
=
{
arctan
(
a
+
b
1
−
a
b
)
if
a
b
<
1
,
arctan
(
a
+
b
1
−
a
b
)
+
π
if
a
b
>
1
,
π
2
if
a
b
=
1
and
a
,
b
>
0
,
−
π
2
if
a
b
=
1
and
a
,
b
<
0.
For the addition of hyperbolic arctangents:
arctanh
(
a
)
+
arctanh
(
b
)
=
arctanh
(
a
+
b
1
+
a
b
)
if
|
a
b
|
<
1
Logarithm and arctanh
artanh
(
x
)
=
1
2
ln
(
1
+
x
1
−
x
)