Analysis
Real analysis
- Laplace transform, Fourier transform, Mellin transform
- functional dependence
- Padé aproximant
- integration and derivation
- Lipschitz continuous function and uniformly continuous function
- Weierstrass theorem.
- Bessel functions.
- Jacobi elliptic function.
- Bolzano-Weierstrass theorem.
- Hessian matrix
- integration on Rn
- Riemann--Stieltjes integral.
- series
- differentiability
Numerical methods
Differential equations
- famous equations
- Green's function method
- reduction of order for linear ODEs
- lowering order by chain rule
Functional analysis
- Banach space
- Hilbert space
- spectral theory
- symmetric operator
- Hermitian matrix and unitary matrix.
- variational problem
- extrema
- distribution (functional analysis)
- Stone's theorem
- convolution (discrete)
Complex analysis
- holomorphic function
- entire function
- Cayley map
- Cauchy--Goursat theorem
- Cauchy integral formula
- Riemann zeta function
- meromorphic function
- Hartog's theorem
%%{ init: { "themeVariables": { "fontSize": "10px" } } }%%
graph TD
A[Functions of a Complex Variable] --> B[Holomorphic Functions]
B --> C[Cauchy–Riemann Conditions]
B --> D[Differentiability and Analyticity]
D --> E[Power Series]
E --> M[Laurent Series]
M --> N[Singularities]
N --> O[Residue theorem]
B --> F[Integration in the Complex Plane]
F --> G[Cauchy's Theorem]
G --> H[Cauchy's Integral Formula]
H --> I[Consequences: Derivatives; Cauchy's Inequality]
I --> J[Morera's Theorem]
J --> K[Liouville's Theorem & Maximum Modulus Principle]
K --> L[Open Mapping Theorem]
A --> Q[Conformal Transformations]
Q --> R[Möbius Transformations]