Analysis
Real analysis
Basic concepts
- Laplace transform, Fourier transform, Mellin transform
- functional dependence
- entire function
- Riemann zeta function
- Padé aproximant
- integration and derivation
- Lipschitz continuous function and uniformly continuous function
- Weierstrass theorem.
- Bessel functions.
- Jacobi elliptic function.
- Bolzano-Weierstrass theorem.
- Hessian matrix
- integration on Rn
Numerical methods
Differential equations
- famous equations
- Green's function method
- reduction of order for linear ODEs
- lowering order by chain rule
Functional analysis
- Banach space
- Hilbert space
- spectral theory
- symmetric operator
- Hermitian matrix and unitary matrix.
- variational problem
- extrema
- distribution (functional analysis)
- Stone's theorem
- convolution (discrete)
Complex analysis
- holomorphic function
- Cauchy--Goursat theorem
- Cauchy integral formula
- Riemann zeta function
- meromorphic function
- Hartog's theorem
%%{ init: { "themeVariables": { "fontSize": "10px" } } }%% graph TD A[Functions of a Complex Variable] --> B[Holomorphic Functions] B --> C[Cauchy–Riemann Conditions] B --> D[Differentiability and Analyticity] D --> E[Power Series] E --> M[Laurent Series] M --> N[Singularities] N --> O[Residue theorem] B --> F[Integration in the Complex Plane] F --> G[Cauchy's Theorem] G --> H[Cauchy's Integral Formula] H --> I[Consequences: Derivatives; Cauchy's Inequality] I --> J[Morera's Theorem] J --> K[Liouville's Theorem & Maximum Modulus Principle] K --> L[Open Mapping Theorem] A --> Q[Conformal Transformations] Q --> R[Möbius Transformations]